Tutorium zur Vorlesung "Mathematik im Querschnitt"

1. Im \mathbb{R}^2 seien die beiden Quadriken Q_1,Q_2 durch die Gleichungen

$$Q_1: \quad x^2 + 2xy + 6y^2 + 2x = -1, \qquad Q_2: \quad 5x^2 - 10xy + 6y^2 = 1$$

gegeben.

a) Zeigen Sie durch quadratische Ergänzung, daß Q_1, Q_2 im \mathbb{R}^2 die gleiche affine Normalform $Q' = \{\binom{w}{z} \mid w^2 + z^2 = 1\}$ besitzen und bestimmen Sie Affinitäten

$$g_1, g_2 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 mit $g_1(Q_1) = Q'$ und $g_2(Q_2) = Q'$.

- b) Geben Sie eine Affinität $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ an mit $h(Q_1) = Q_2$.
- 2. Bestimmen Sie mittels quadratischer Ergänzung in Abhängigkeit des reellen Parameters r die affine Normalform der durch

$$(1+r)x^2 + ry^2 - 2rxy + y - x = 0$$

gegebenen Quadrik Q.

3. Betrachten Sie die von zwei reellen Parametern $\lambda, \mu \in \mathbb{R}$ abhängige 3×3 -Matrix

$$A(\lambda, \mu) := \begin{pmatrix} \lambda & 2 & -4 \\ 1 & \lambda & \mu \\ \mu & 0 & 5 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Zeigen Sie, daß die Menge

$$\left\{ \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \mathbb{R}^2 \mid A(\lambda, \mu) \text{ ist nicht invertierbar.} \right\} \subset \mathbb{R}^2$$

ein Kegelschnitt in \mathbb{R}^2 ist. Bestimmen Sie den Typ dieses Kegelschnitts und folgern Sie, daß es ein R>0 gibt, so daß $A(\lambda,\mu)$ für alle $\binom{\lambda}{\mu}\in\mathbb{R}^2$ mit $\lambda^2+\mu^2\geq R^2$ invertierbar ist.

4. Bestimmen Sie in Abhängigkeit des reellen Parameters t den Typ der durch die folgende Gleichung gegebenen Quadrik im \mathbb{R}^2

$$(1+4t)y^2 + x^2 + 2xy + 2tx - (8t^2 - 2t)y = -4t^3 + 1 - t^2.$$